A Spike-Timing Pattern Based Neural Network Model for the Study of Memory Dynamics
نویسندگان
چکیده
It is well accepted that the brain's computation relies on spatiotemporal activity of neural networks. In particular, there is growing evidence of the importance of continuously and precisely timed spiking activity. Therefore, it is important to characterize memory states in terms of spike-timing patterns that give both reliable memory of firing activities and precise memory of firing timings. The relationship between memory states and spike-timing patterns has been studied empirically with large-scale recording of neuron population in recent years. Here, by using a recurrent neural network model with dynamics at two time scales, we construct a dynamical memory network model which embeds both fast neural and synaptic variation and slow learning dynamics. A state vector is proposed to describe memory states in terms of spike-timing patterns of neural population, and a distance measure of state vector is defined to study several important phenomena of memory dynamics: partial memory recall, learning efficiency, learning with correlated stimuli. We show that the distance measure can capture the timing difference of memory states. In addition, we examine the influence of network topology on learning ability, and show that local connections can increase the network's ability to embed more memory states. Together theses results suggest that the proposed system based on spike-timing patterns gives a productive model for the study of detailed learning and memory dynamics.
منابع مشابه
Role of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملA Nonlinear Autoregressive Model with Exogenous Variables Neural Network for Stock Market Timing: The Candlestick Technical Analysis
In this paper, the nonlinear autoregressive model with exogenous variables as a new neural network is used for timing of the stock markets on the basis of the technical analysis of Japanese Candlestick. In this model, the “nonlinear autoregressive model with exogenous variables” is an analyzer. For a more reliable comparison, here (like the literature) two approaches of Raw-based and Signal-ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009